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Note 

Pseudo-spectral Simulation of a Two-Dimensional 
Vortex Flow in a Stratified, Incompressible Fluid 

1. INTRODUCTION 

In recent years, there has been growing interest in spectral methods and their 
usefulness in calculating all types of flows. Problems which have been attacked by 
spectral methods include transition in plane Poiseuille and Couette flow [ 11, 
barotropic motions of the ocean [2], and atmospheric diffusion [3], to name only a 
few. Work by two of the present authors has dealt with solutions to the 
Navier-Stokes equations for incompressible flow [4-61. In this paper, the authors 
report experience in computing inviscid, stratified, two-dimensional flows. 

2. STATEMENT OF THE PROBLEM 

The authors investigated the motion of a two-dimensional vortex of finite radius in 
a corner of a semi-infinite medium with solid boundaries at x = 0 and y = 0, as 
shown in Fig. 1. The computational domain is bounded by the lines x = 0, x = L, 
y = 0, and y = -H. The solid boundaries can be viewed as the result of image 
vortices in the flow placed outside the computational domain in such a way as to 
generate a t,u = 0 streamline along the lines x = 0 and y = 0. For a line vortex of 
radius much smaller than the distance to the nearest boundary, a procedure for 
solving this problem exactly is well-known [ 71 and serves as a guide to the numerical 
study. The initial vorticity distribution in an infinite medium is assumed to be of the 
form 

4x, Y> = & ew (I-(x -x0>’ - 0, -YJ’l/%L 
0 

where r is the circulation and r. is the nominal vortex core radius. In the presence of 
solid boundaries, “image” vorticity of appropriate sign and location is added to 
ensure o = 0 at such boundaries. In the absence of stratification, one expects such a 
vortex to move in much the same way as a line vortex. Stratification may, depending 
upon the sign of the vorticity, either aid or oppose this motion but will, in any case, 
certainly distort the initial vorticity distribution. The density was taken to vary 
linearly with depth. 
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FIG. 1. Schematic representation of the initial vorticity distribution. The computational domain is 
O<x<LL, -H<y<O. 
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The equations of motion are, under the Boussinesq approximation, 

DW g 3P -=--- 
Dt p ax ’ 

Op 0 
Dt= ’ 

(1) 

vsy = Co, (3) 

aw av 
u=ay’ v=-z 

For the solution of the Poisson equation (3), boundary conditions are required on the 
stream function at all boundaries. A finite difference code [8] developed for the same 
problem computes w on the boundary from the Biot-Savart integral solution to 
Poisson’s equation. For the nonuniform mesh implied by Chebyshev polynomials, 
such a computation is not practical; for N modes in x and M modes in y, it would 
involve either storing N*M + M2N values of the logarithmic kernel of the Biot-Savart 
integral, or recomputing these values at every time step. Imposition of simple 
boundary conditions, such as v/ = 0 or @/an = 0, is, however, relatively easy, even 
with Chebyshev polynomials. For x = 0 and y = 0, the rigid wall condition, w = 0, is 
appropriate. For the boundaries at x = L and y = -H, imposition of w = 0 would be 
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equivalent to placing an incorrect vortex image of opposite sign to the actual vortex 
outside of these boundaries. The parallel flow condition at x = L or y = -H; i.e., 
awl&r = 0, is also not correct; it can be viewed as being produced principally by a 
vortex image of like sign outside these boundaries. An approximately correct solution 
may be obtained by solving two separate Poisson problems, one with a rigid wall 
boundary condition and the other with a parallel flow boundary condition. The 
Poisson problem being linear, the solutions to each of the problems may be 
superimposed 

This procedure has the effect of essentially removing the influence of unwanted 
images; the first false image is cancelled out, leaving a dipole array of false images 
centered 3L or 3H from the x = L or y = -H boundary, the effect of which on the 
solution is negligible. It should be noted that, although the resulting problem is 
periodic over a distance 4L in the x-direction and 4H in the y-direction, it is certainly 
no longer periodic over the computational domain. 

For the convected variables, vorticity and density, one could apply antisymmetry 
and symmetry conditions, respectively, at the rigid boundaries. That is, 

w=o at x= 0 and y= 0, 

ap 0 
an= 

at x=0 and y =O. 

Such boundary conditions are required in finite difference simulations but, since no 
flow crosses these boundaries, it was anticipated these boundary conditions would be 
unnecessary for the pseudo-spectral simulation, and this was, in fact, the case. It has 
been argued by Charney et al. [9] that solution of the 2-D vorticity equation (1) 
would require specification of the vorticity only at inflow points. Since there is no a 
priori knowledge of vorticity or density being convected from outside the 
computational domain, inflow convection for the corner flow case was simply set to 
zero in the current computations. It is worth noting that when this was not done, the 
computation was unstable, as expected. No special computation was made at outflow 
points on the boundary. 

3. NUMERICAL SCHEME 

The solution for the flow was developed by assuming the stream function, vorticity 
and density can be represented by functions of the form 

f(x,Y,O= t : a,,,(t) 7’; (5) T*, (5) 
n=O m=O 

in which a,,,(t) are unknown functions of time to be determined from the stream 
function vorticity equations and c is the Chebyshev polynomial of order II in the 
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interval 0 < x/L < 1. The values of an,,, ‘s for the vorticity were determined by 
integrating Eq. (1) in real space by the Adams-Bashforth method and then using a 
Fast Fourier Transform routine to find the a,,,, ‘s from the spatial values of vorticity. 
In the time integration of the vorticity equation, it is necessary to compute the values 
of the convective terms at each so-called Ynatural point” in physical space. These 
values are tabulated by computing the velocities from the stream function expansions 
and the vorticity derivatives from the vorticity expansion. Note that these expansions 
are from the previous time integration since the Adams-Bashforth scheme is explicit. 
This approach (collocation) [ 141 for solving for the vorticity equation was adopted 
over solving the problem in spectral space due to the ease of satisfying boundary 
conditions and also due to the simplicity. A similar procedure is used to integrate the 
density equation in time. 

The Poisson equation was solved in spectral space by a variation of the tensor- 
product method [lo]. The operator a’/ax* is diagonalized by means of a similarity 
transformation and the a*/@* operator is made diagonal by integrating the Poisson 
equation twice in y ( 111. Boundary conditions are applied by means of the “tau” 
method [ 13 1. 

4. TIME-STEP SIZE 

We have chosen to select the time step based on a local Courant number [ 121, 

At = C,,, min 
O(i(N 

{AXi/U(Xi 3 Yj), AY,lv(xiYj)}, 
%i<M 

where Axi, Ayj are computed from the spacing of the natural points. C,,, was 
typically chosen to be 0.2. 

5. SMOOTHING ALGORITHM 

Straightforward application of the numerical procedure outlined in Section 3 to the 
problem outlined in Section 2, produced grid-scale ripples in the vorticity distribution 
which became unacceptably large with time. These ripples were insensitive to the 
choice of time step and highly resistant to the addition of artificial dissipative terms. 

The elimination of this “short wavelength garbage,” as Boris and Book [ 161 have 
so aptly called it, has been one of the objects of the present study. We hypothesize, as 
suggested by Boris and Book, that the source of the noise is in the amplification of 
the inevitable over- and undershoots which occur when a function with a steep (even 
though finite) gradient is represented by any finite series of terms. 

It is easy, of course, to build a dissipative mechanism which reduces or eliminates 
high-frequency components of a solution; the problem is to do this without also 
destroying the physically meaningful portion of the solution. For example, one 
possible strategy is to apply some low-pass filter to the solution either at every time 
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step or, as suggested by Haidvogel et al. [2] and independently by Gottlieb and 
Orszag [ 151, at intervals of many time steps. The authors have experimented with 
many such filters, including one of the precise form suggested by Haidvogel et al., 
with disappointing results. Any filter stiff enough to control the noise also produced 
an unacceptable smearing of the main vortex. 

An entirely different approach is to attempt to use an understanding of the 
hypothesized source of the noise to control it. When a function, vorticity for example, 
is expanded in Chebyshev polynomials, the approximating function will pass through 
specified values at the natural points exactly. In the vicinity of a steep gradient, the 
approximate function will display alternate maxima and minima between natural 
points. As the vorticity is convected, usually by less than one full “grid” spacing, 
these extrema will appear at the natural points. What is characteristic of these 
extrema is that, when they first appear, they are local-a maximum followed one grid 
point away by a minimum, and so on. An entire class of schemes, originated by Boris 
and Book [ 16, 171, and cumulatively termed “Flux-Corrected Transport,” has been 
created to control such local extrema. The authors attempted to employ such schemes 
for the current problem with virtually no success-the problem being that the “weak 
clipping” over three grid points reported by Boris and Book is unacceptable when the 
phenomenon of interest is at most five grid points wide. A generalization of the 
original one-dimensional schemes to multiple dimensions [ 181 shows more promise, 
but again implementation of the scheme for the problem at hand has produced 
unsatisfactory results. 

The most satisfactory results to date have been obtained by a rather simple-minded 
approach. In this procedure, the solution is advanced in time by first including x 
convection, smoothing the solution by an heuristic rule in the x-direction, adding y 
convection and then smoothing the resulting solution in the y-direction. Note that the 
solution does not employ the classical splitting approach since the convective terms 
are both computed from the same previous time-step solutions. The heuristic rule is 
that, after convection in the x-direction, the solution is examined at the natural points 
for each constant y. If the solution at a given point is not bounded by its neighbors in 
x, then the solution is examined over five points. Let xi be the suspect point, f(Xj) be 
the solution at that point, and Sj+ ,,* = f(xj+ i) -f(Xj), and SO on. Then, if 

sj+W2 ’ sj+3/2 ( o 
and 

Sj-1/2 * sj-3/2 < 09 

a diffusive correction is added at xj: 

ftxj> =fCxj) + V[sj+ l/2 - sj- l/21, 

and correspondingly subtracted at neighboring points. In the current study, v was 
taken to be 0.1. The procedure is also applied in the y-direction. The most that can be 
expected of such a scheme is to control the solution at the natural points; the 
remaining grid-scale noise may be removed by some after-the-fact, “cosmetic” low- 
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pass filtering. It is important to note, however, that no amount of cosmetic filtering 
can restore solutions computed with the damping coefficient v = 0 to a similarly 
smooth state. The “cosmetic” spectral filter was of a form suggested by Haidvogel ef 
al. [2]: 

a,,,,,(& filtered) =f f a n m “I?# (t), 

where 

f = 1.0 - exp[-(N2 - n’)/Ni] 
n 1.0 - exp[-(N’/Ni)] . 

N, was typically taken to be 2N. This filter was chosen since it produced 
qualitatively satisfactory results; the optimum choice of filter will obviously depend 
on the needs of a particular problem. 

6. NUMERICAL RESULTS 

Typical results of the computations are presented in Figs. 2 and 3. For this case, 
we chose a strong, constant stratification (+/+ = constant), such that 2Nx0/v, was 

a b 

c 
FIG. 2. Perspective plot of vorticity at representative times. The origin of coordinates is in the upper 

left-hand corner, x increases to the right, and y increases from the bottom to the top of the plot. The 
mesh which is plotted is much finer than the computational “grid”; 17 modes were used in the x- 
direction and 33 modes in the y-direction. (a) Nt = 0. (b) Nt = 0.58. (c) Nt = 1.35. 
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b 

FIG. 3. Perspective plot of density at representative times. For clarity, the origin of coordinates is in 
the lower left-hand corner, with y increasing from top to bottom and x increasing from left to right. (a) 
Nf = 0. (b) Nt = 0.58. (c) Nt = 1.35. 

equal to 1, where N= [(-g/p)@/@)]” is the Brunt-Vaisala frequency and 
u0 = T/27rx,, is the initial upward velocity of the vortex [7]. Computations made with 
a finite difference code developed by St-Cyr [8] are in substantial agreement with 
those presented in Figs. 2 and 3. 

One obvious dynamical effect of stratification, as evidenced in Fig. 2, is the 
production of countersign vorticity around the vortex core. Since the fluid is 
incompressible, the density plots (Fig. 3) provide a snapshot of the vertical 
displacement of the fluid from its original position. Note that fluid near the centerline, 
where the vertical velocity is the greatest, is trailing the main vortex; heavier fluid 
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that would have been convected with the vortex in an unstratified medium is instead 
“draining” from the vortex at the centerline. 

7. DISCUSSION 

One may at the outset expect difficulties in computing highly nonlinear inviscid 
flows with spectral or pseudo-spectral methods. The basic difficulty is that, even for 
two-dimensional problems, the nonlinear terms will produce an energy cascade from 
low wavenumbers to high. In the absence of a dissipative mechanism to remove 
energy from high wavenumbers, a spectrally truncated representation of the Euler 
equations will whiten with time and eventually become equipartitioned, even if the 
effects of aliasing are completely eliminated. Nonlinear convective processes for the 
problem at hand take place on a time scale of the order X,&J, ; the linear effects of 
buoyancy, on the other hand, have a time scale of order l/N. The parameter v,/Nx,, 
which is the ratio of the buoyancy time scale to the convective time scale, is thus a 
measure of the nonlinearity of the flow; it has a role similar to the Rossby number E 
in simulations of Rossby waves. Since u,,/Nx, = 2 for the simulation presented here, 
substantial spectral energy transfer by nonlinear processes may be expected on a time 
scale Nr x 1. The difficulties reported by Haidvogel et al. [2] for E z 1 are a result 
of substantial spectral energy transfer taking place over one period of a Rossby wave; 
the heuristic fix suggested by Haidvogel et al. is simply a means of taking the energy 
out of high wavenumbers which would otherwise collect there. The current simulation 
is subject to the same problem and the heuristic smoothing mechanism presented here 
is essentially a nonlinear dissipative mechanism which operates most strongly at the 
highest wavenumber in the spectrum. 

One reviewer has pointed out to the authors that the Charney-Fjortoft-Von 
Neumann closure used in these simulations may result in an unphysically large 
vorticity gradient at a point where the flow is tangent to the boundary [ 191. The 
authors observed no such phenomenon in the study reported here; it may be that the 
smoothing mechanism, which was introduced to alleviate problems which occur even 
in a completely closed box, prevented such a problem from occurring. Indeed, the 
dissipation due to the smoothing mechanism presented here is greatest near the 
boundary, where the mesh is very fine. 

This study was originally undertaken to obtain a faster means of solving stratified 
flow problems than existing finite difference codes. Comparison of computer codes 
for speed requires a careful study, and it is not our purpose to report such a study 
here. Preliminary comparisons indicate, however, that the pseudo-spectral code may 
be as much as 10 times faster than comparable finite difference codes. The experience 
reported here, however, suggests that the inviscid pseudo-spectral code will be most 
usefully applied to problems more nearly linear than the one presented here. 
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